2026年南通大学硕士研究生入学考试复习大纲

培养单位: 物理科学与技术学院

2025年6月

 科目名称
 量子力学
 科目代码
 703

考试范围及要点

本科目考试的重点是要求了解量子力学建立过程中重要的实验现象和结论、熟练掌握波函数的物理解释,Schrodinger 方程的建立、基本性质和精确求解,同时掌握一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、全同性原理和泡利不相容原理等,并具有综合运用所学知识分析问题和解决问题的能力。

1. 波函数和 Schrodinger 方程

波粒二象性,量子现象的实验依据,量子力学的基本假设。波函数及其统计解释,Schrodinger 方程,连续性方程,波包的演化,Schrodinger 方程的定态解,态叠加原理。

了解波粒二象性假设的物理意义及其主要实验事实; 熟练掌握波函数的标准化条件: 有限性、连续性和单值性。深入理解波函数的概率解释。

理解态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义;熟练掌握 Schrodinger 方程的建立过程。深入了解定态 Schrodinger 方程,定态与非定态波函数的意义及相互 关系。了解连续性方程的推导及其物理意义。

2. 一维势场中的粒子

一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振,δ函数和δ势阱中的束缚态,一维谐振子。

熟练掌握一维 Schrodinger 方程边界条件的确定和处理方法;

熟练掌握一维无限深方势阱的求解方法及其物理讨论,掌握一维有限深方势阱束缚态问题的求解方法;熟练掌握势垒贯穿的求解方法及隧道效应的解释;掌握一维有限深方势阱的反射、透射的处理方法;

熟练掌握一维谐振子的能谱及其定态波函数的一般特点及其应用; 了解δ函数势的处理方法。

3. 力学量用算符表示

坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄 米算符的本征值与本征函数,共同本征函数,不确定度关系,角动量算符。连续本征函数的归一化,力学量完全集。力学量平均值随时间的演化,量子力学的守恒量和对称性。

掌握算符的本征值和本征方程的基本概念; 熟练掌握厄米算符的基本性质及相关的定理; 熟练

掌握坐标算符、动量算符以及角动量算符,包括定义式、相关的对易关系及本征值和本征函数。

熟练掌握力学量取值的概率及平均值的计算方法;理解两个力学量同时具有确定值的条件和共同本征函数;熟练掌握不确定度关系的形式、物理意义及其一些简单的应用;理解力学量平均值随时间变化的规律;掌握如何根据哈密顿算符来判断该体系的守恒量。

4. 中心力场

两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子, 氢原子及类氢离子。

熟练掌握两体问题化为单体问题及分离变量法求解三维库仑势问题; 熟练掌握氢原子和类氢离子的能谱及基态波函数以及相关的物理量的计算; 了解三维无穷球方势阱及二维、三维各向同性谐振子的基本处理方法。

5. 量子力学的矩阵表示与表象变换

量子态和力学量算符的矩阵表示,表象变换,狄拉克符号。

理解力学量所对应的算符在具体表象的矩阵表示;了解表象之间幺正变换的意义和基本性质;掌握量子力学公式的矩阵形式及求解本征值、本征矢的矩阵方法;了解狄拉克符号的意义及基本应用。

6. 自旋

电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的 Schrodinger 方程,自旋单态与三重态,光谱线的精细和超精细结构。

了解斯特恩一盖拉赫实验及其他自旋存在的实验证据,电子自旋回转磁比率与轨道回转磁比率;熟练掌握自旋算符的对易关系和自旋算符的矩阵形式(泡利矩阵)、与自旋相联系的测量值、概率和平均值等的计算以及其本征值方程和本征矢的求解方法;

了解电磁场中的 Schrodinger 方程和简单塞曼效应的物理机制;掌握角动量耦合(自旋-轨道藕合)的概念、总角动量本征态的求解及碱金属原子光谱的精细和超精细结构;熟练掌握自旋单态与三重态求解方法及物理意义。

7. 定态问题的近似方法

非简并定态微扰论,变分法。了解定态微扰论的适用范围和条件;掌握非简并定态微扰论中波函数一级修正和能级一级、二级修正的计算;掌握变分法的基本应用。

8. 多体问题

了解量子力学全同性原理及其对于多体系统波函数的限制;费米子和波色子的基本性质和泡利原理。

试题结构:

一、试卷的内容结构

波函数和 Schrodinger 方程 15%-20%

一维势场中的粒子 15%-20%

力学量用算符表示 20%-25%

中心力场 5%-10%

量子力学的矩阵表示与表象变换 10%-15%

自旋 15%-20%

定态问题的近似方法 10%

多体问题~5%

二、试卷的题型结构

概念或填空题 30%

证明推导 30%

分析计算题 40%

参考书目名称	编者	出版单位	版次	年份
量子力学教程	周世勋	高等教育出版社	2	2010
量子力学教程	曾谨言	科学出版社	3	2008